White emission of lithium ytterbium tetraphosphate nanocrystals
نویسندگان
چکیده
منابع مشابه
Dynamic fluctuations in ultrasmall nanocrystals induce white light emission.
Individual ultrasmall CdSe nanocrystals have recently been found to emit white light, but the ultimate origin of the phenomenon has remained elusive. Here we use a combination of state-of-the-art experiment and theory to show that excitation sets the ultrasmall nanocrystals into a fluxional state. Their energy gaps vary continuously on a femtosecond time scale, so that even an individual nanocr...
متن کاملWhite-light emission from magic-sized cadmium selenide nanocrystals.
Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420-710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ult...
متن کاملUpconversion emission of BaTiO3 : Er nanocrystals
Here, we report the dopant concentration and pump-power dependence upconversion emission properties of erbium doped BaTiO3 nanocrystals derived from sol–emulsion–gel method. Green (550 nm) and red (670 nm) upconversion emissions were observed at room temperature from the 4 S3/2 and 4 F9/2 levels of Er 3+ : BaTiO3 nanocrystals. It is found that at 850 mW of cw excitation power (at 980 nm) the to...
متن کاملPlasmonic Enhancement of Emission from Si-nanocrystals
Plasmonic gratings of different periodicities are fabricated on top of Silicon nanocrystals embedded in Silicon Dioxide. Purcell enhancements of up to 2 were observed, which matches the value from simulations. Plasmonic enhancements are observed for the first three orders of the plasmonic modes, with the peak enhancement wavelength varying with the periodicity. Biharmonic gratings are also fabr...
متن کاملEmission efficiency limit of Si nanocrystals
One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2011
ISSN: 1094-4087
DOI: 10.1364/oe.19.014083